• <ul id="8aeke"><sup id="8aeke"></sup></ul>
    <tfoot id="8aeke"></tfoot>
    <del id="8aeke"></del>
    <abbr id="8aeke"></abbr>
      <strike id="8aeke"><menu id="8aeke"></menu></strike>
    • <tfoot id="8aeke"></tfoot>
    • 高中數(shù)學(xué)測繪知識點總結(jié),高中數(shù)學(xué)測試題及答案

      2024-05-17 測繪知識 46
      A?AA?

      今天給各位分享高中數(shù)學(xué)測繪知識點總結(jié)的知識,其中也會對高中數(shù)學(xué)測試題及答案進行解釋,如果能碰巧解決你現(xiàn)在面臨的問題,別忘了關(guān)注本站,現(xiàn)在開始吧!

      目錄一覽:

      高二數(shù)學(xué)知識點總結(jié)

      高二數(shù)學(xué)的難度是比較高的,畢竟已經(jīng)是中學(xué)數(shù)學(xué)的攻堅期,所以我們更應(yīng)該努力學(xué)習(xí)。我整理了相關(guān)資料,希望能幫助到您。

      1、柱、錐、臺、球的結(jié)構(gòu)特征

      (1)棱柱:

      幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

      微信號:MeetyXiao
      添加微信好友, 獲取更多信息
      復(fù)制微信號

      (2)棱錐

      幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

      (3)棱臺:

      幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

      幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:底面是一個圓;母線交于圓錐的頂點;側(cè)面展開圖是一個扇形.

      (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點;側(cè)面展開圖是一個弓形.

      (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

      俯視圖(從上向下)

      注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

      3、空間幾何體的直觀圖——斜二測畫法

      斜二測畫法特點:原來與x軸平行的線段仍然與x平行且長度不變;

      原來與y軸平行的線段仍然與y平行,長度為原來的一半.

      4、柱體、錐體、臺體的表面積與體積

      (1)幾何體的表面積為幾何體各個面的面積的和.

      (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

      (3)柱體、錐體、臺體的體積公式

      高中數(shù)學(xué)必修二知識點總結(jié):直線與方程

      (1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α180°

      (2)直線的斜率

      定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

      當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

      過兩點的直線的斜率公式:

      注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

      (3)直線方程

      點斜式:直線斜率k,且過點

      注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

      當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

      斜截式:,直線斜率為k,直線在y軸上的截距為b

      兩點式:()直線兩點,

      截矩式:

      其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

      一般式:(A,B不全為0)

      注意:各式的適用范圍特殊的方程如:

      (4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (5)直線系方程:即具有某一共同性質(zhì)的直線

      (一)平行直線系

      平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (二)垂直直線系

      垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (三)過定點的直線系

      ()斜率為k的直線系:,直線過定點;

      ()過兩條直線,的交點的直線系方程為

      (為參數(shù)),其中直線不在直線系中.

      (6)兩直線平行與垂直

      注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

      (7)兩條直線的交點

      相交

      交點坐標(biāo)即方程組的一組解.

      方程組無解;方程組有無數(shù)解與重合

      (8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點

      (9)點到直線距離公式:一點到直線的距離

      (10)兩平行直線距離公式

      在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解.

      高中數(shù)學(xué)必修二知識點總結(jié):圓的方程

      1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的 *** 叫圓,定點為圓心,定長為圓的半徑.

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時,方程表示圓,此時圓心為,半徑為

      當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.

      (3)求圓方程的 *** :

      一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.

      3、高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:

      直線與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線,圓,圓心到l的距離為,則有

      (2)過圓外一點的切線:k不存在,驗證是否成立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

      (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

      設(shè)圓,

      兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

      當(dāng)時兩圓外離,此時有公切線四條;

      當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

      當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

      當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.

      注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

      5、空間點、直線、平面的位置關(guān)系

      公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).

      應(yīng)用:判斷直線是否在平面內(nèi)

      用符號語言表示公理1:

      公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

      符號:平面α和β相交,交線是a,記作α∩β=a.

      符號語言:

      公理2的作用:

      它是判定兩個平面相交的 *** .

      它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點.

      它可以判斷點在直線上,即證若干個點共線的重要依據(jù).

      公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.

      推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

      公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

      公理4:平行于同一條直線的兩條直線互相平行

      高中數(shù)學(xué)必修二知識點總結(jié):空間直線與直線之間的位置關(guān)系

      異面直線定義:不同在任何一個平面內(nèi)的兩條直線

      異面直線性質(zhì):既不平行,又不相交.

      異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

      異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

      求異面直線所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

      (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

      (8)空間直線與平面之間的位置關(guān)系

      直線在平面內(nèi)——有無數(shù)個公共點.

      三種位置關(guān)系的符號表示:aαa∩α=Aaα

      (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;αβ

      相交——有一條公共直線.α∩β=b

      2、空間中的平行問題

      (1)直線與平面平行的判定及其性質(zhì)

      線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

      線線平行線面平行

      線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

      那么這條直線和交線平行.線面平行線線平行

      (2)平面與平面平行的判定及其性質(zhì)

      兩個平面平行的判定定理

      (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

      (線面平行→面面平行),

      (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

      (線線平行→面面平行),

      (3)垂直于同一條直線的兩個平面平行,

      兩個平面平行的性質(zhì)定理

      (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

      (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

      3、空間中的垂直問題

      (1)線線、面面、線面垂直的定義

      兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

      線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

      平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

      (2)垂直關(guān)系的判定和性質(zhì)定理

      線面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

      性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

      面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

      性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

      4、空間角問題

      (1)直線與直線所成的角

      兩平行直線所成的角:規(guī)定為.

      兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

      兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

      (2)直線和平面所成的角

      平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

      平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

      求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

      在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

      在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

      (3)二面角和二面角的平面角

      二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

      二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

      直二面角:平面角是直角的二面角叫直二面角.

      兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

      求二面角的 ***

      定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

      垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

      必修二知識點總結(jié):解三角形

      (1)正弦定理和余弦定理

      掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

      (2)應(yīng)用

      能夠運用正弦定理、余弦定理等知識和 *** 解決一些與測量和幾何計算有關(guān)的實際問題.

      高中數(shù)學(xué)必修二知識點總結(jié):數(shù)列

      (1)數(shù)列的概念和簡單表示法

      了解數(shù)列的概念和幾種簡單的表示 *** (列表、圖象、通項公式).

      了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

      (2)等差數(shù)列、等比數(shù)列

      理解等差數(shù)列、等比數(shù)列的概念.

      掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.

      能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

      了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

      高中數(shù)學(xué)必修二知識點總結(jié):不等式

      高中數(shù)學(xué)必修二知識點總結(jié):不等關(guān)系

      了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

      (2)一元二次不等式

      會從實際情境中抽象出一元二次不等式模型.

      通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

      會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

      (3)二元一次不等式組與簡單線性規(guī)劃問題

      會從實際情境中抽象出二元一次不等式組.

      了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

      會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

      (4)基本不等式:

      了解基本不等式的證明過程.

      會用基本不等式解決簡單的更大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

      高中數(shù)學(xué)測繪知識點總結(jié),高中數(shù)學(xué)測試題及答案

      高中數(shù)學(xué)必修二知識點總結(jié)2022

      相信很多的同學(xué)同學(xué)都是非常的關(guān)心高考數(shù)學(xué)有哪些必考的知識點的,下面我給大家分享一些高中數(shù)學(xué)必修二知識點 總結(jié) ,希望對大家有所幫助。

      高中數(shù)學(xué)必修二知識點1

      1、柱、錐、臺、球的結(jié)構(gòu)特征

      (1)棱柱:

      幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

      (2)棱錐

      幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底 面相 似,其相似比等于頂點到截面距離與高的比的平方.

      (3)棱臺:

      幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

      幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:底面是一個圓;母線交于圓錐的頂點;側(cè)面展開圖是一個扇形.

      (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點;側(cè)面展開圖是一個弓形.

      (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

      俯視圖(從上向下)

      注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

      3、空間幾何體的直觀圖——斜二測畫法

      斜二測畫法特點:原來與x軸平行的線段仍然與x平行且長度不變;

      原來與y軸平行的線段仍然與y平行,長度為原來的一半.

      4、柱體、錐體、臺體的表面積與體積

      (1)幾何體的表面積為幾何體各個面的面積的和.

      (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

      (3)柱體、錐體、臺體的體積公式

      高中數(shù)學(xué)必修二知識點2

      直線與方程

      (1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α180°

      (2)直線的斜率

      定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

      當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

      過兩點的直線的斜率公式:

      注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

      (3)直線方程

      點斜式:直線斜率k,且過點

      注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

      當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

      斜截式:,直線斜率為k,直線在y軸上的截距為b

      兩點式:()直線兩點,

      截矩式:

      其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

      一般式:(A,B不全為0)

      注意:各式的適用范圍特殊的方程如:

      (4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (5)直線系方程:即具有某一共同性質(zhì)的直線

      (一)平行直線系

      平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (二)垂直直線系

      垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (三)過定點的直線系

      ()斜率為k的直線系:,直線過定點;

      ()過兩條直線,的交點的直線系方程為

      (為參數(shù)),其中直線不在直線系中.

      (6)兩直線平行與垂直

      注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

      (7)兩條直線的交點

      相交

      交點坐標(biāo)即方程組的一組解.

      方程組無解;方程組有無數(shù)解與重合

      (8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點

      (9)點到直線距離公式:一點到直線的距離

      (10)兩平行直線距離公式

      在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解.

      高中數(shù)學(xué)必修二知識點3

      圓的方程

      1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的 *** 叫圓,定點為圓心,定長為圓的半徑.

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

      (2)一般方程

      當(dāng)時,方程表示圓,此時圓心為,半徑為

      當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.

      (3)求圓方程的 *** :

      一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.

      3、高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:

      直線與圓的位置關(guān)系有相離,相切,相交三種情況:

      (1)設(shè)直線,圓,圓心到l的距離為,則有

      (2)過圓外一點的切線:k不存在,驗證是否成立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

      (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

      設(shè)圓,

      兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

      當(dāng)時兩圓外離,此時有公切線四條;

      當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

      當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

      當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.

      注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

      5、空間點、直線、平面的位置關(guān)系

      公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).

      應(yīng)用:判斷直線是否在平面內(nèi)

      用符號語言表示公理1:

      公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

      符號:平面α和β相交,交線是a,記作α∩β=a.

      符號語言:

      公理2的作用:

      它是判定兩個平面相交的 *** .

      它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點.

      它可以判斷點在直線上,即證若干個點共線的重要依據(jù).

      公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.

      推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

      公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)

      公理4:平行于同一條直線的兩條直線互相平行

      高中數(shù)學(xué)必修二知識點4

      空間直線與直線之間的位置關(guān)系

      異面直線定義:不同在任何一個平面內(nèi)的兩條直線

      異面直線性質(zhì):既不平行,又不相交.

      異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

      異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

      求異面直線所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

      (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

      (8)空間直線與平面之間的位置關(guān)系

      直線在平面內(nèi)——有無數(shù)個公共點.

      三種位置關(guān)系的符號表示:aαa∩α=Aaα

      (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;αβ

      相交——有一條公共直線.α∩β=b

      2、空間中的平行問題

      (1)直線與平面平行的判定及其性質(zhì)

      線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

      線線平行線面平行

      線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

      那么這條直線和交線平行.線面平行線線平行

      (2)平面與平面平行的判定及其性質(zhì)

      兩個平面平行的判定定理

      (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

      (線面平行→面面平行),

      (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

      (線線平行→面面平行),

      (3)垂直于同一條直線的兩個平面平行,

      兩個平面平行的性質(zhì)定理

      (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

      (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

      3、空間中的垂直問題

      (1)線線、面面、線面垂直的定義

      兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

      線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

      平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

      (2)垂直關(guān)系的判定和性質(zhì)定理

      線面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

      性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

      面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

      性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

      4、空間角問題

      (1)直線與直線所成的角

      兩平行直線所成的角:規(guī)定為.

      兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

      兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

      (2)直線和平面所成的角

      平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

      平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

      求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

      在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

      在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

      (3)二面角和二面角的平面角

      二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

      二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

      直二面角:平面角是直角的二面角叫直二面角.

      兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

      求二面角的 ***

      定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

      垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

      高中數(shù)學(xué)必修二知識點5

      解三角形

      (1)正弦定理和余弦定理

      掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

      (2)應(yīng)用

      能夠運用正弦定理、余弦定理等知識和 *** 解決一些與測量和幾何計算有關(guān)的實際問題.

      高中數(shù)學(xué)必修二知識點6

      數(shù)列

      (1)數(shù)列的概念和簡單表示法

      了解數(shù)列的概念和幾種簡單的表示 *** (列表、圖象、通項公式).

      了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

      (2)等差數(shù)列、等比數(shù)列

      理解等差數(shù)列、等比數(shù)列的概念.

      掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.

      能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

      了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

      高中數(shù)學(xué)必修二知識點總結(jié)2022相關(guān) 文章 :

      ★ 高二數(shù)學(xué)會考知識點大全

      ★ 高中數(shù)學(xué)必背知識點

      ★ 高三數(shù)學(xué)重點知識點

      ★ 高中數(shù)學(xué)函數(shù)周期知識點總結(jié)最新

      ★ 2022高二數(shù)學(xué)知識點人教版

      ★ 高三數(shù)學(xué)復(fù)習(xí)計劃范文2022十篇

      ★ 2022年高二數(shù)學(xué)教師工作總結(jié)

      ★ 2022高中數(shù)學(xué)教師工作總結(jié)范文10篇

      ★ 2022新學(xué)期高中數(shù)學(xué)教學(xué)計劃5篇

      ★ 高二數(shù)學(xué)知識點筆記

      var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

      高中數(shù)學(xué)知識點最全總結(jié)

      高考數(shù)學(xué)考試要取得好成績,一方面要有扎實的基本功、熟練的計算能力,同時還要有一定的答題技巧。下面是我給大家?guī)淼母咧袛?shù)學(xué)知識點最全 總結(jié) ,以供大家參考!

      數(shù)學(xué)重點知識點及答題技巧總結(jié)

      一、高考數(shù)學(xué)必考題型 之 函數(shù)與導(dǎo)數(shù)

      考查 *** 運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

      函數(shù)與導(dǎo)數(shù)單調(diào)性

      若導(dǎo)數(shù)大于零,則單調(diào)遞增;若導(dǎo)數(shù)小于零,則單調(diào)遞減;導(dǎo)數(shù)等于零為函數(shù)駐點,不一定為極值點。需代入駐點左右兩邊的數(shù)值求導(dǎo)數(shù)正負判斷單調(diào)性。

      若已知函數(shù)為遞增函數(shù),則導(dǎo)數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導(dǎo)數(shù)小于等于零。

      二、高考數(shù)學(xué)必考題型 之 幾何

      公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點在此平面內(nèi)

      公理2:過不在同一條直線上的三點,有且只有一個平面

      公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

      公理4:平行于同一條直線的兩條直線互相平行

      定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補

      判定定理:

      如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行 “線面平行”

      如果一個平面內(nèi)的兩條相交直線與另一個平面都平行,那么這兩個平面平行“面面平行”

      如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直“線面垂直”

      如果一個平面經(jīng)過另一個平面的垂線,那么這兩個平面互相垂直“面面垂直”

      三、高考數(shù)學(xué)必考題型 之 不等式

      對稱性

      傳遞性

      加法單調(diào)性,即同向不等式可加性

      乘法單調(diào)性

      同向正值不等式可乘性

      正值不等式可乘方

      正值不等式可開方

      倒數(shù)法則

      四、高考數(shù)學(xué)必考題型 之 數(shù)列

      (1)理解數(shù)列的概念,了解數(shù)列通項公式的意義了解遞推公式是給出數(shù)列的一種 *** ,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

      (2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。

      (3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,井能解決簡單的實際問題。

      必背公式

      1、一元二次方程的解

      -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

      根與系數(shù)的關(guān)系x1+x2=-b/ax1x2=c/a注:韋達定理

      判別式b2-4a=0注:方程有相等的兩實根

      b2-4ac0注:方程有兩個不相等的個實根

      b2-4ac0注:方程有共軛復(fù)數(shù)根

      2、立體圖形及平面圖形的公式

      圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

      圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0

      拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2px2=2pyx2=-2py

      直棱柱側(cè)面積S=cxh斜棱柱側(cè)面積S=c'xh

      正棱錐側(cè)面積S=1/2cxh'正棱臺側(cè)面積S=1/2(c+c')h'

      圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2

      圓柱側(cè)面積S=cxh=2pixh圓錐側(cè)面積S=1/2xcxl=pixrxl

      弧長公式l=axra是圓心角的弧度數(shù)r0扇形面積公式s=1/2xlxr

      錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h

      斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

      柱體體積公式V=sxh圓柱體V=pixr2h

      3、圖形周長、面積、體積公式

      長方形的周長=(長+寬)×2

      正方形的周長=邊長×4

      長方形的面積=長×寬

      正方形的面積=邊長×邊長

      三角形的面積

      已知三角形底a,高h,則S=ah/2

      已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)

      和:(a+b+c)x(a+b-c)x1/4

      已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

      設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

      則三角形面積=(a+b+c)r/2

      設(shè)三角形三邊分別為a、b、c,外接圓半徑為r

      則三角形面積=abc/4r

      常用的三角函數(shù)公式

      兩角和公式

      sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      倍角公式

      tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      半角公式

      sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

      和差化積

      2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

      高考應(yīng)試技巧

      技巧一提前進入“角色”

      考前晚上要睡足八個小時,早晨更好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、準(zhǔn)考證等。

      提前半小時到達高考考區(qū),一方面可以消除新異 *** ,穩(wěn)定情緒,從容進場,另一方面也留有時間提前進入“角色”讓大腦開始簡單的數(shù)學(xué)活動?;貞浺幌赂呖紨?shù)學(xué)常用公式,有助于高考數(shù)學(xué)超常發(fā)揮。

      技巧二情緒要自控

      最易導(dǎo)致高考心理緊張、焦慮和恐懼的是入場后與答卷前的“臨戰(zhàn)”階段,此間保持心態(tài)平衡的 *** 有三種

      轉(zhuǎn)移注意法:把注意力轉(zhuǎn)移到對你感興趣的事情上或滑稽事情的回憶中。

      自我安慰法:如“我經(jīng)過的考試多了,沒什么了不起”等。

      抑制思維法:閉目而坐,氣貫丹田,四肢放松,深呼吸,慢吐氣,如此進行到高考發(fā)卷時。

      技巧三摸透“題情”

      剛拿到高考數(shù)學(xué)試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服“前面難題做不出,后面易題沒時間做”的有效 措施 ,也從根本上防止了“漏做題”。

      從高考數(shù)學(xué)卷面上獲取最多的信息,為實施正確的解題策略作準(zhǔn)備,順利解答那些一眼看得出結(jié)論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩(wěn)定,使高考數(shù)學(xué)能夠超常發(fā)揮。

      技巧四信心要充足,暗示靠自己

      高考數(shù)學(xué)答卷中,見到簡單題,要細心,莫忘乎所以,謹防“大意失荊州”。面對偏難的題,要耐心,不能急。

      考試全程都要確定“人家會的我也會,人家不會的我也會”的必勝信念,使自己始終處于更佳競技狀態(tài)

      技巧五數(shù)學(xué)答題有先有后

      1、答題應(yīng)先易后難,先做簡單的數(shù)學(xué)題,再做復(fù)雜的數(shù)學(xué)題;根據(jù)自己的實際情況,跳過實在沒有思路的高考數(shù)學(xué)題,從易到難。

      2、先高分后低分,在高考數(shù)學(xué)考試的后半段時要特別注重時間,如兩道題都會做,先做高分題,后做低分題,對那些拿不下來的數(shù)學(xué)難題也就是高分題應(yīng)“分段得分”,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數(shù)學(xué)超常發(fā)揮的幾率。

      高中數(shù)學(xué)知識點最全總結(jié)相關(guān) 文章 :

      ★ 高中數(shù)學(xué)知識點歸納最新

      ★ 高中數(shù)學(xué)基本知識點最新

      ★ 高一數(shù)學(xué)知識點全面總結(jié)

      ★ 高中數(shù)學(xué)知識點總結(jié)

      ★ 高中數(shù)學(xué)知識點:橢圓方程式知識點總結(jié)

      ★ 高一數(shù)學(xué)考試基礎(chǔ)知識點

      ★ 高中數(shù)學(xué)必修一三角函數(shù)知識點總結(jié)

      ★ 高中數(shù)學(xué)知識點:平面向量的公式的知識點總結(jié)

      ★ 高中數(shù)學(xué)全部知識點提綱整理

      ★ 人教版高中數(shù)學(xué)知識點總結(jié)最新

      關(guān)于高中數(shù)學(xué)測繪知識點總結(jié)和高中數(shù)學(xué)測試題及答案的介紹到此就結(jié)束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關(guān)注本站。

      客服微信號碼

      客服微信號碼

      客服微信號碼

      客服微信號碼

      留言咨詢
      提交留言

      您將免費獲得

      • 全面診斷

        您將獲得專家對您公司申請資質(zhì)所需條件的全面診斷服務(wù),我們不同于傳統(tǒng)代辦公司,僅是提供一些通用的,淺顯的建議

      • 找出疏忽點

        我們在了解您公司的基本情況之后,將挖掘出您公司目前不利于資質(zhì)申請的疏忽點,還將詳細說明您在申請資質(zhì)時應(yīng)當(dāng)改善的確切的事項。

      • 分析需求

        我們通過豐富的從業(yè)經(jīng)驗,結(jié)合目前的實際情況,確認好符合您實際經(jīng)營情況的資質(zhì)需求。

      • 定制方案與報價

        對您的需求深入了解后,將結(jié)合您公司目前的情況,我們將為您量身定制一份資質(zhì)代辦方案及報價單。

      獲取方案

      ×
      請設(shè)置您的cookie偏好
      歡迎來到資質(zhì)參謀
      我們希望在本網(wǎng)站上使用cookie,以便保障本網(wǎng)站的安全、高效運轉(zhuǎn)及服務(wù)優(yōu)化,有關(guān)我們使用cookie的更多信息,請點擊查看了解更多。
      接收Cookies
      決絕Cookies
      亚洲色成人中文字幕网站| 亚洲欧洲日本在线| 亚洲精品成人片在线播放| jizzjizz亚洲日本少妇| 亚洲熟伦熟女专区hd高清| 亚洲一区精品视频在线| 亚洲综合在线观看视频| 久久国产精品亚洲综合| 久久久久久久综合日本亚洲| 亚洲人成无码网站久久99热国产| 国产精品亚洲精品爽爽| 久久精品国产亚洲AV| 色偷偷尼玛图亚洲综合| 亚洲国产成人AV在线播放 | 亚洲国产成人久久精品app| 日韩亚洲Av人人夜夜澡人人爽| 亚洲欧洲在线观看| 久久亚洲精品无码AV红樱桃| 久久久久亚洲AV无码网站| 亚洲高清在线观看| 亚洲综合久久综合激情久久| 久久久久久亚洲AV无码专区| 精品日韩亚洲AV无码| 亚洲日产2021三区在线 | 亚洲国产一成久久精品国产成人综合| WWW国产亚洲精品久久麻豆| 国产精品亚洲а∨无码播放不卡| 国产成人精品亚洲一区| 亚洲第一网站男人都懂| 亚洲日韩国产成网在线观看| AV在线播放日韩亚洲欧| 亚洲乱码一区二区三区在线观看| 国产亚洲av片在线观看播放| 亚洲电影免费在线观看| 亚洲色图视频在线观看| 亚洲娇小性xxxx色| www亚洲精品久久久乳| 亚洲免费日韩无码系列| 亚洲日韩一页精品发布| 亚洲av伊人久久综合密臀性色| 久久av无码专区亚洲av桃花岛|